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ABSTRACT
With a massive increase in time series sensor data being gen-
erated by an ever-growing number of industrial equipment
such as gas and steam turbines, new systems are required
to store and analyze this machine-generated “Industrial Big
Data.” GE Global Research, GE Intelligent Platforms, and
GE Power & Water designed and built Enterprise Histo-
rian to address this challenge with the goal of enabling GE
Power & Water to perform deep historical analysis and data
mining on terabytes of time series sensor data. Enterprise
Historian is built on top of Apache Hadoop, an open-source
framework for executing batch analytics on big data sets in
a distributed computing environment. An instance of En-
terprise Historian has been deployed on a 48-node, 280TB
Hadoop cluster at GE Global Research and loaded with 3
years of Thermal RM&D sensor data. With Enterprise His-
torian, analytics that used to take weeks to months to run
can now be executed in minutes to hours. Enterprise His-
torian has also been commercialized by GE Intelligent Plat-
forms as Proficy Historian HD.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—distributed systems; G.3 [Probability and
Statistics]: Time series analysis

General Terms
Experimentation, Performance

Keywords
enterprise historian, industrial big data, remote monitoring
and diagnostics, time series sensor data

1. INTRODUCTION
GE’s installed base of industrial equipment, including gas

turbines, aircraft engines, and medical imaging devices, can
be found all over the world. Each piece of equipment con-
tains sensors that continuously generate time series data for

monitoring and diagnostics purposes. For a large percent-
age of that equipment, a subset of their data is sent to a
GE Remote Monitoring and Diagnostics (RM&D) Center
to proactively monitor for customers that have a CSA (cus-
tomer service agreement) and automatically detect main-
tenance needs. As ever-smaller sensors become ubiquitous
and network connectivity improves, these pieces of equip-
ment are incorporating increasingly larger sets of sensors
and sending data at increasingly faster rates. In order to
support and take maximal advantage of this growing In-
dustrial Big Data, it is critical that the infrastructures at
GE’s RM&D centers be able to efficiently store and analyze
quickly growing volumes of time series sensor data.

Historically it was possible for a single machine or a hand-
ful of machines to receive and store much of this data. How-
ever, the growth in sheer volume of devices and sensors cou-
pled with the desire to perform rapid data mining on larger
amounts of historical data (requiring that they be kept in
memory or on disk) requires development of systems with
new technical approaches to address these challenges. En-
terprise Historian was designed and built by GE Global Re-
search, GE Intelligent Platforms, and GE Power & Water to
address this challenge with the goal of enabling GE Power
& Water to store and analyze tens to hundreds of terabytes
of time series sensor data from gas and steam turbines at its
Thermal RM&D center.

Historians are special-purpose database applications de-
signed to efficiently store and analyze large quantities of time
series data with extremely fast read and write performance.
This enables historians to store anywhere from thousands to
millions of data points per second, capturing streams of data
in real-time from sensors located across a manufacturing fa-
cility, power plant, or other such sensor-rich environment.
While very efficient, most of the historians in the market-
place are single server solutions, thus limited by the memory
and disk capacities of a single machine. Our objective was
to design and develop a next-generation historian solution
capable of efficiently storing and performing rich historical
analysis on hundreds of terabytes of time series data. Such
a Big Data-enabled “Enterprise Historian” system would be
nearly seamlessly scalable in how much data could be stored



and analyzed, moving from months of data stored on a sin-
gle server to decades of data stored on a cluster of low-cost
commodity servers.

The Enterprise Historian system was built to complement
Proficy HistorianTM, an existing operational historian from
GE Intelligent Platforms, with the ability to store Proficy
Historian archive files in a Hadoop-based, distributed envi-
ronment for massive storage and parallel processing. Apache
HadoopTM is an extremely popular open-source framework
for executing batch analytics on big data sets in a distributed
computing environment due to its near-linear scalability and
built-in fault tolerance. Because of how naturally Enter-
prise Historian complements Proficy Historian, GE Intelli-
gent Platforms is making Enterprise Historian commercially
available outside of GE under the moniker Proficy Historian
HD [7].

An instance of Enterprise Historian has been deployed on
a 48-node, 280TB Hadoop cluster at GE Global Research
with 3 years of Thermal RM&D sensor data loaded from
the years 2004, 2006, and 2011. With this instance, ana-
lytics that used to take weeks to run can now be executed
in minutes. In practice, such analytics were very difficult
to execute in the operational historian data store because
it would have to slow down its processing and analyses of
the recently arriving time series data points in order to run
analytics on the older historical time series data. Other
instances of Enterprise Historian now exist within GE In-
telligent Platforms and GE Software as well, but this paper
discusses the instance set up at GE Global Research.

This paper is organized as follows. Section 2 gives a back-
ground on Big Data in general, and highlights some common
Big Data management and analysis challenges faced by most
organizations. Section 3 describes related work in the space
of time series data management, and in particular big time
series data. Section 4 provides an overview of the GE Power
& Water Thermal RM&D Center and why Enterprise His-
torian is needed. Section 5 outlines the specific use cases
for which the system was designed and tested, followed by
Section 6 which describes the Enterprise Historian software
architecture. Section 7 describes the hardware infrastruc-
ture used for performance testing, and Section 8 details the
performance results for the use cases described in Section 5.
Section 9 then describes the impact of the system. Finally,
Sections 10 and 11 describe our future vision for Big Data
management for RM&D and presents general conclusions on
the system.

2. BIG DATA BACKGROUND
Big Data can be most succinctly described as data that

is too big, moving too fast, and/or too poorly structured to
be stored and analyzed in its entirety through traditional
computing approaches. In order to extract meaning and
value from Big Data, new systems are required to handle
the challenges posed by the volume, velocity, and variety of
these big data sets.

While Big Data challenges are not particularly new (espe-
cially to businesses such as GE), highly scalable and fault-
tolerant software systems that enable the cost-effective stor-
age and analysis of big data sets are. Historically, data sets
that were too large to analyze were typically stored on disk
for a period of time, and eventually were then rolled off of
disk and onto a tape archive for long-term storage, with very
little chance of ever being used again. This write-once-read-

never strategy for handling Big Data produced a lot of tape
back-ups (and commensurate storage costs), but did not
produce a lot of value from that data. Hardware advances
from reduced disk and memory costs to increased network
bandwidth, coupled with software improvements from im-
proved cluster management software to the development of
Big Data systems, have come together to support the han-
dling of increasingly large volumes of data that is growing
and changing at increasingly faster rates. Replacing the tra-
ditional archive-and-ignore model of data management, to-
gether these hardware and software advances are ushering in
a new era in which all data for all time is online and avail-
able for analysis and mining, giving researchers and data
scientists access to larger, faster data sets than realistically
possible before.

2.1 Hadoop Background
Apache HadoopTM was originally created by Doug Cut-

ting and Mike Cafarella [16]. They took the best practices
of Nutch, their web search engine project (now an Apache
project), and combined it with ideas from articles released
by Google on their Google File System [8] and MapReduce
[5]. The success of Hadoop has been staggering, with a mar-
ket research institute predicting Hadoop will be worth $813
million by the year 2016 [4].

Hadoop enables analytics to be executed in parallel across
potentially thousands of machines (which are called nodes
when they are assembled into Hadoop clusters). Hadoop is
designed to run on clusters of low-cost, commodity servers
and is comprised of two main components. The first com-
ponent is the Hadoop Distributed File System (HDFS), an
infrastructure for storing files across a cluster of machines
[20]. Files are chunked into blocks and each block is stored
with a replication factor (3x by default), meaning multiple
copies of each block are stored on different nodes in the clus-
ter for fault tolerance. Because Hadoop is designed to run
on commodity servers, it is designed to handle node failures
without losing data or canceling jobs.

The second component of Hadoop is the MapReduce par-
allel computing paradigm [5], consisting of two stages. The
Map stage involves dividing work across the cluster of nodes,
performing initial processing of the data local to each node,
and then shuffling the data so that related data points are
grouped together on the same node for further processing.
The Reduce stage then executes further operations on the
logically grouped data, typically producing an aggregated
result. If an individual execution fails on any given node
due to hardware or other failures, it is automatically rerun
on a different node in the same cluster. Hadoop guarantees
that even if some nodes in the cluster fail, the execution will
still complete and the engineer can have confidence in the
results.

Together, the distributed storage provided by HDFS com-
bined with the parallel computing paradigm of MapReduce
makes Hadoop a highly scalable and fault-tolerant storage
and computing platform. For many applications, Hadoop
is nearly linearly scalable; meaning that doubling the per-
formance of a Hadoop cluster requires simply doubling the
number of nodes in the cluster. For example, if a typical
Hadoop job takes 2 minutes to run on 10 nodes, it will take
approximately 1 minute to run on a comparable 20 node
cluster. This near-linear scalability, coupled with the built-
in fault tolerance, has made Hadoop a popular platform for



executing batch analytics on massive quantities of data.
Today, Hadoop provides the backbone of Facebook, Twit-

ter, eBay, Amazon, Google, IBM, LinkedIn, and more with
several vendors supporting their own commercial distribu-
tions of Hadoop including Cloudera, MapR, Hortonworks,
Intel, and Pivotal to name a few [16, 1].

With Hadoop, businesses may now process huge volumes
of unstructured data sets in a relatively cost effective and
timely manner. Instead of representative samplings of their
data, companies can now process any and all data associated
with their business problems [11].

2.2 Big Data Management and Analysis Chal-
lenges

With Big Data, there are three core challenges that should
be addressed in tandem: 1) data storage, 2) data manage-
ment, and 3) data processing/analysis.

Today, unstructured data comprises approximately 80% of
all data [2]. Hadoop and similar solutions attempt to address
the challenges posed by unstructured data by providing a
single infrastructure that can enable both long-term storage
and analysis of big data sets.

With Hadoop, organizations can solve the data storage
challenge by purchasing more disks [2]. From an analysis
perspective, many efforts are underway to augment exist-
ing analytic systems (e.g., SAS, R, Matlab, etc.) to enable
them to execute on Hadoop-based Big Data, where it makes
the most sense financially and from a business operations
standpoint [11].

According to McKinsey & Company, the United States
alone is likely to “face a shortage of 140,000 to 190,000 peo-
ple with deep analytical skills as well as 1.5 million managers
and analysts with the know-how to use the analysis of big
data to make effective decisions’ by 2018” [11]. Thus, de-
veloping novel Big Data systems is not enough; universities
and companies must begin training students and employees
today to take full advantage of these scalable systems being
developed to run analytics on Big Data.

Unquestionably, the biggest Big Data challenge facing GE
is from Industrial Big Data. GE has a large installed base
of industrial equipment, a significant portion of which is
monitored through sensors in real or near real-time. The
industrial equipment being built and sold today is equipped
with sensors that capture an order of magnitude more data
than the equipment put into production just a few years ago.
And with many of the assets in GE’s installed base sending
data for remote monitoring and diagnostics, the time series
sensor data GE manages is already significant and growing
rapidly [12].

3. RELATED WORK
The vast majority of the Big Data generated today is In-

dustrial Big Data. According to McKinsey & Company,
“manufacturing stores more data than any other sector—
close to 2 exabytes of new data stored in 2010” alone [15].
This number is impressive for a single sector and speaks to
the massive volume of Industrial Big Data being generated
when one recognizes that manufacturing is just one of many
sectors that generates time series sensor data. Other such
sectors are as diverse as financial trading markets, industrial
equipment monitoring and diagnostics, and patient health
monitoring, to name a few. Despite its size and significant

growth potential, big time series data has not received nearly
the attention that other Big Data challenges have, however.

Some approaches to time series storage and analysis in-
volve embedding time series data into relational or columnar
data stores. And while some columnar stores in particular
have proven to be reasonably effective at storing time se-
ries data, they often are suboptimal for querying time series
data. As outlined by Shafer et al at Carnegie Mellon Uni-
versity [19], one of the many reasons is that generic data
stores do not by default store time series data in time sorted
order, and instead require the data to be sorted as part of
every query executed on the system. This aspect of database
storage can significantly limit the read performance of a tra-
ditional database storing billions of time series data points.

There are a suite of operational historian solutions specif-
ically optimized for time series data in the commercial mar-
ketplace, including GE’s own Proficy Historian product from
GE Intelligent Platforms [6], which give both very high read
and write performance. Beyond their high read and write
rates, these operational stores are further enhanced to re-
duce the data footprint, utilizing proprietary file formats
that give very high compression rates on time series data.
However, these traditional historian solutions are single-server
operational data stores that are not natively distributed and
are thus not easily scalable once the volume of data exceeds
the capacity of a single machine.

Beyond the operational historian market, there has been
a body of research specifically focused on Big Data-enabled
storage and processing of time series sensor data similar to
our Enterprise Historian solution. Pure Big Data time se-
ries solutions include the Open Time Series Database (also
called OpenTSDB) built on top of HBase [21]. OpenTSDB
is a distributed system built primarily for storing and graph-
ing time-stamped data, particularly log file data, and is not
built to enable meaningful time series analytics on the data.
KairosDB is a recent rewrite of OpenTSDB built on top of
Cassandra, with its first beta release in April of this year
[10]. At least two commercial solutions also exist. Tem-
poDB provides a database service for storing and analyzing
time series data, but with a maximum resolution of 1ms
[3]. Seeq is a Seattle-based start-up focused on building Big
Data platforms for industrial process data [22]. In contrast
to some of those systems, Enterprise Historian merges the
time series optimizations available in traditional historian
products with the near-linear scalability and fault tolerance
supported by today’s Big Data systems.

4. THERMAL RM&D OVERVIEW
GE Power & Water’s Thermal RM&D Center can monitor

over 1,500 turbines globally, receiving a real-time stream of
time series data from approximately 2.8 million unique sen-
sors across those assets worldwide. Data points arrive from
the global assets at an average rate of 5 points per minute
per sensor for an average total of 100K data points/second
(some data points may already have been compressed by
intermediate Historians). This data can be collected in a
central time series store and made available for monitoring
and diagnostics analytics. Typical analytics currently run
in production at the Thermal RM&D Center may use any-
where from a single recent time series point to several days’
worth of values from a particular unit, and may calculate
items such as corrected values, aggregated metrics, or per-
formance characteristics for a given unit. Analytics results



are often stored back to the time series data store as de-
rived data and may serve as inputs to other calculations.
Enabling fast execution of these analytics while retrieving
years of time series data for deep historial analytics at the
same time can allow Thermal RM&D to quickly detect po-
tential issues with gas turbines and related equipment in
the field and to make quick corrections to improve turbine
performance, to name a few capabilities.

The typical model for RM&D solutions for industrial ma-
chinery is to process data locally (at the location of the
equipment) and only send a reduced subset of the data to
the central infrastructure. This traditional site-based model
is very effective for a small number, for example tens, of
sites. It reduces network bandwidth, provides access to real
time data streams from the machinery source, and lowers
central storage costs. However, this model does not scale
well to hundreds or thousands of sites. It is challenging
to support a large number of independent remote hardware
and software systems at customers’ sites while ensuring that
they are current and equivalent. Access to the equipment
is often difficult, as the hardware is typically required to
reside on the customer network to which remote access is
often restricted. Because of the many independent installa-
tions, there is limited ability to continually add capability
and leverage the latest data storage and analytics technolo-
gies. Most importantly, there may be no straightforward
capability to perform fleet level analytics since the data for
different assets resides in separate locations.

With the advent of Big Data and Cloud technologies, a
near real-time response from a cloud implementation has
become feasible and cost effective. Such a solution offers
multiple important advantages:

• Reduced complexity of onsite components, moving fo-
cus from analytic execution to data collection and trans-
port

• Reduced management and support costs of onsite hard-
ware and software

• On-demand elastic and scalable compute infrastruc-
ture that can grow with the installed base of industrial
equipment, allowing for better return on investment
(ROI)

• Enabling fleet-wide analytics, as well as continuous im-
provement processes with the ability to measure and
understand data quality issues rapidly

• Ability to modify analytics in minutes rather than days
or weeks

• Enhanced support model with analysts having direct
access to the raw equipment data for deeper data min-
ing, leading to faster problem resolution

One of the primary drawbacks to a centralized solution
is network bandwidth costs associated with streaming large
amounts of data from each site to the central location. This
impact on bandwidth requirements can be reduced by im-
plementing the RM&D services and resources regionally.

As shown in Figure 1, the GE Power & Water Thermal
RM&D Center utilizes such a centralized architecture. On-
site operational historians collect time series data in real-
time and transmit that data in real or near real-time to the
centralized RM&D Center’s data infrastructure. Analytics

Figure 1: Centralized Architecture for RM&D

and visualizations are executed against the centralized op-
erational historian for near real-time analysis. As data ages
it is moved into the Enterprise Historian system for deep
historical analysis and data mining.

5. THERMAL RM&D USE CASES
The ability to operate against historical machinery data

is important to all aspects of RM&D and machinery life
cycle management. Through the support of Hadoop and
MapReduce, all historical machinery data is made available
to massive parallel operations by equipment experts and
data scientists. As data sizes have exploded, the traditional
model of extracting data from a database and downloading
it for desktop analysis is no longer feasible. The objective
of Enterprise Historian is to improve the overall capacity
and speed with which the various users can learn from time
series data.

The following monitoring and diagnostics use cases have
been used to evaluate the performance of Enterprise Histo-
rian as compared to the current GE Power & Water Thermal
RM&D production environment. Although we have limited
the size of the input data for those use cases in order to com-
pare the performance of Enterprise Historian to the current
production historian environment more fairly, each analytic
can execute over the entire fleet at the same time if given
enough input data. The use cases are as follows:

5.1 Plant Operations Support

5.1.1 Automated Data Requests
Compared to the other three use cases below which are

mainly focused on testing the integration of Hadoop and
Historian technologies, this exemplary use case is aimed at
evaluating the Enterprise Historian system under significant
load. Several MapReduce queries have been constructed
based upon automated data requests (ADRs) we have re-
ceived from internal customers. The largest such query will
request several months of data for one fourth of our entire
monitored fleet, and interpolate this data to a time-aligned
resolution of five minutes.

5.2 Condition Based Maintenance



5.2.1 Overspeed Analysis
Overspeed analysis scans through time-aligned 1-second

resolution data from two tags (shaft speed and compressor
discharge pressure) to determine if an overspeed condition
has ever occurred. The data mining MapReduce job devel-
oped for this use case processes sequential raw data points
from both tags while performing “on the fly” interpolation
between each set of two points for the 1-second values it
needs, so it runs much more quickly than the data density
analysis job which has to read and count every tag’s time
series instead of processing just two tags’ time series.

5.3 Enterprise Machinery Data Management
and Quality

5.3.1 Data Gap Analysis
Data gap analysis checks to determine if there are literal

“gaps” of data in our time series records. The MapReduce
job that has been developed for this use case checks each in-
dividual tag to see if the time differential between two sub-
sequent records exceeds the maximum time quantum that
has been set by the business. The results file will contain
the timestamps of each pair of such records. The result file
is then ingested into Thermal RM&D’s production systems
for reconciliation.

5.3.2 Data Density Analysis
Data density analysis is very important to ensure that the

on-site equipment, as well as our central operations center,
are configured and synced properly. This allows us to deter-
mine if we are collecting too much or too little information
on one of our assets. This is a MapReduce query that per-
forms a daily count of all records specific to a particular sen-
sor. When queried with multiple assets, a comparison can
be made between them to determine if our data collection
operations need to be modified. The raw results can be fed
into a subsequent process to generate a heatmap for better
analysis, although this heatmap capability is not currently
integrated within the Hadoop framework.

6. SOFTWARE ARCHITECTURE
Enterprise Historian builds on the strengths of Proficy

Historian to develop a scalable big data time series storage
and analytic platform as shown in Figure 2. A historian
archive file is bounded by size. In the current RM&D setup,
these files are approximately 9GB in size. When Proficy His-
torian creates a new historian archive file to write data to
it, it associates a “start time” with the file and will not store
any data prior to that time in the current file. Once the size
limit is reached, Proficy Historian automatically closes the
file, associates an “end time” with the file, and creates an-
other historian archive file to become the current file. The
archive importer (also called the ingestion service) copies
the Historian archive files (converting them to the latest
Historian archive format if they are archives from previous
years in older formats) to the Hadoop cluster’s filesystem
(HDFS) and stores information about each file in a meta-
data store, a PostgreSQL 9.2 database, such as the file’s
location within HDFS, its start and end times, and which
tags are stored in the file. This information allows the query
planner to limit which files are needed to process the user’s
query. The query planner passes the query and the list of

Figure 2: Enterprise Historian Architecture

files needed to process the query to the job launcher, which
kicks off a MapReduce job on the cluster of low-cost com-
modity servers. The MapReduce job runs many tasks si-
multaneously on large numbers of machines to parallelize
the reading and analysis of the historian archive files across
each machine in the Hadoop cluster. Each sub-task reads
only one part of one historian archive file, allowing large vol-
umes of historical data to be collected, sorted, merged, and
analyzed more quickly in parallel.

The MapReduce job invokes two components in series, a
Historian Mapper component and a Historian Reducer com-
ponent with an optional Custom Calculation and Custom
Writer. The Historian Mapper reads the time series tuples
from the various Historian archive files, groups them into
lists by tagnames, and sorts the lists by timestamps. The
Historian Reducer then reduces each list to the desired query
results using a given query mode (raw, count, average, in-
terpolation, and/or custom calculations) before outputting
the query results to HDFS or a custom writer as shown in
Figure 3. Queries can specify their own custom calculation
and custom writer classes to be invoked by the MapReduce
job to perform special computations on the query results
or write the results to external non-HDFS stores or special
destinations.

Enterprise Historian is designed and built with three core
requirements in mind:

1. Scalability—the system must be able to scale in both
data storage capacity and analytics performance. That
is, adding nodes to the cluster should increase both
the amount of data able to be stored and the speed of
execution of the analytics (given the same amount of
data).

2. Fault-tolerance—all data must be backed up such that



Figure 3: Historian Reducer Component with Cus-
tom Calculation and Custom Writer

the loss of up to 10% of the nodes in a cluster at any
single time should result in no loss of data.

3. Rich Analytics—both predefined and custom analytics
must be able to execute against the data repository, to
enable in-depth mining of the historical data stored in
Enterprise Historian.

To date, Enterprise Historian has been run on the Stan-
dard Edition of Cloudera’s Distribution Including Apache
Hadoop (CDH) and also on Pivotal HD. At its core, Enter-
prise Historian is built from Hadoop, a Metadata Store, and
a set of Web Services.

6.1 Proficy Historian
Proficy Historian is the operational historian product of-

fered by GE Intelligent Platforms. It features a very efficient
storage system for time series data, provides high through-
puts for read and write operations, and serves the need to
manage short-to-mid-term time series data very well, but is
limited by the computing power of a single server at present
time. As the size of collected data grows, Proficy Historian
will need to hand off data to a long-term storage and query
platform, which is Enterprise Historian.

Proficy Historian stores data by time, but also allows users
to partition all data into multiple data sets. Each data set
has its own stream of archive files organized by time. Parti-
tioning can be based on application, so separate applications
can use their own data sets. It can also be based on data
characteristics such as collection rates, which can be used to
increase data density in archive files and improve the I/O
efficiency of queries.

Proficy Historian can be configured to send archive files
(closed files for older data or a snapshot of the “current” file)
to be consumed by Enterprise Historian. During the pro-
cess, metadata for archive files is also generated and made
available as well. The archive importer, the ingestion ser-
vice of Enterprise Historian, picks up the archive files and
their metadata and moves them along to the Hadoop cluster
and a metadata store respectively. Enterprise Historian is
designed to accept data from multiple Proficy Historians.

6.2 Data Files and Storage Size Considerations

Different options, in terms of file format, have been consid-
ered for storing time series data within Enterprise Historian.
One options is to store the native Proficy Historian archive
files as is, and another option is to convert them into plain-
text files, such as tab separated value (TSV) files. Proficy
Historian archive files, compared with their equivalent plain-
text files, are highly compressed and more efficient in terms
of storage need. Archive files are “splittable” in a sense that
they can be broken into smaller pieces and then processed
in a parallel manner. Such characteristics make archive files
an appealing option for storing large amounts of time series
data. It has been found that on average an archive file is
eight times smaller in required storage space than its corre-
sponding plaintext file. Since files are typically replicated in
the Hadoop Distributed File System, the potential saving in
storage is even more significant.

Sensor data used for big data analytics is expected to be
stored permanently and new data is added to the data set
continuously. Efficiency in data storage on disk is one of the
key factors addressed by Enterprise Historian to lower the
cost of implementing the solution. Historian archive files
require less disk space than alternatives, and this is a key
differentiator of Enterprise Historian.

6.3 Hadoop
Within Enterprise Historian, all of the time series data is

stored within the Hadoop Distributed File System. Once in-
gested, Proficy Historian archive files are loaded into HDFS
and automatically “chunked” into 128MB blocks, which are
replicated into three copies stored on three different nodes,
with one node in a different rack than the first two nodes.
Enterprise Historian has a standard set of Map operations
for parsing the Proficy Historian Archive files and a set of
different Reduce operations to suit specific time series an-
alytic requirements. Specifically, reducers have been built
within the MapReduce framework to return the raw data,
to return interpolated data sets at fixed intervals, to pro-
vide minimums, maximums and means over time ranges,
and more.

6.4 Metadata Store
To enhance query performance, a PostgreSQL based meta-

data store is integrated into Enterprise Historian. The store
maintains information on each of the archive files maintained
within the system, such as the archive file locations in HDFS,
the start and end times for the data in each archive file, as
well as relations between tags and archive files. For each
query job executed against the system, the metadata store
is first consulted to identify which archive files are needed to
complete the job. This allows the system to avoid scanning
every archive file for every query, as would be done otherwise
in a default Hadoop implementation.

With information from the metadata store, the query plan-
ner can consolidate multiple queries into one MapReduce
job and therefore eliminate the need to scan archive files in
multiple passes for multiple queries. Per-job metadata gen-
erated by the query planner also serves as a guide for map
tasks to more efficiently scan input archive files, skipping
over large data units that are irrelevant to the queries.

6.5 User Interface and Web Services
Enterprise Historian exposes several RESTful web services



Figure 4: Enterprise Historian Web UI and Web
Services

<job>
<jobName>Overspeed</jobName>
<inputType>HistorianArchiveFormat</inputType>
<outputPath>/hdfs/output/path</outputPath>
<outputType>text</outputType>
<queries><query>
<name>overspeed</name>
<startTime>01/01/2011 00:00:00</startTime>
<endTime>12/31/2011 23:59:59</endTime>
<mode>INTERPOLATED</mode>
<window>1000</window>
<tagFilterList>some-regular-expression</tagFilterList>
<type>overspeed</type>
<tagMatching>5</tagMatching>
</query>
</queries>
</job>

Figure 5: Enterprise Historian XML Job Configura-
tion Document

(Tag, Archive, Job, and Launcher) within its web-based user
interface (Web UI) to access the Metadata store and sup-
port query execution. These services and the Web UI have
been implemented together in a web application run by an
Apache Tomcat container. The services can be utilized for
read accesses to the Metadata store, while the Web UI it-
self provides basic functionality for interactive query sub-
missions using web-based forms and job tracking using links
to Apache Hadoop’s standard web tools. The Web UI also
provides the ability to search for tags and find archive files
using the RESTful services. Figure 4 shows the one-to-one
mappings between the Web UI’s capabilities and the REST-
ful web services that implement these capabilities.

The Web UI is in fact merely a presentation layer on top
of the RESTful services. The Job service receives the user’s
inputs from the Web UI and converts the form parameters
into an XML document for processing by the Launcher ser-
vice. An example of the XML document can be seen in
figure 5. The Launcher service takes an XML document
representing the query job to be executed and launches the
query job using the MapReduce API and configuration in-
formation to allow it to connect to the Hadoop cluster. With
the RESTful web services as the API, Enterprise Historian
can become a platform for larger and more complex applica-
tions that execute analytics, track their progress, and query

Enterprise Historian for generally useful information.
As stated above, Enterprise Historian job configurations

are converted to XML from the various Web UI input fields.
This XML content is used to generate the Hadoop MapRe-
duce jobs. The various XML tags are described below:

• job: The main XML tag

• jobName: Assigns a name to the MapReduce job

• inputType: Indicates the format of the input data

• outputPath: File path in HDFS to write out results

• outputType: Specifies the format of the output data

• queries: The start of one or more specific queries

• query: The start of an individual query

• name: The name of a particular query. Appended to
the end of the output path folder specification

• startTime: The beginning time of the input data to
query

• endTime: The end time of the input data to query

• mode: Specifies the exact ”Historian” function

• window: Used when INTERPOLATION mode is set.
Specifies in milliseconds the data resolution to inter-
polate down to.

• tagFilterList: A comma-separated list of all assets
to query against

• type: Specifies a particular advanced analytic mode

• tagMatching: Specifies if the tagFilterList contains
regular expressions, or literal strings.

7. HARDWARE INFRASTRUCTURE
GE Global Research has provisioned a cluster of com-

modity servers for testing Enterprise Historian in a pre-
production staging environment. The cluster specifications
can be seen below:

• 48 HP ProLiant DL380 G8 nodes (1 name node, 47
data/task nodes), each with:

• 2 Intel Xenon E5-2690 @ 2.9 GHz sockets with hyper-
threading enabled

• 32 CPUs (2 sockets × 8 cores/socket × 2 threads/core)

• 384GB RAM (on each node; was supposed to be 96GB
per node)

• Red Hat Enterprise Linux 6.3 with Linux kernel 2.6.32-
279

• CDH 4.2.1 (Cloudera’s Distribution Including Apache
Hadoop)

• 280TB total disk space for HDFS storage

8. PERFORMANCE RESULTS
Below are the performance results that we obtained from

our Hadoop staging environment.



Table 1: Traditional Historian vs. Enterprise Historian Performance Results
Analytic Duration Single

/ Fleet
Input
Data
(GB)

Output
Record Count

Cycle Time
(Traditional
Historian)

Cycle Time
(Enterprise
Historian)

Perf ADR (82
Tags)

3 Months 5-min
Interpolated

Single
Asset

611 10,628,640 15 minutes 3 minutes

Vib ADR (44
Tags)

3 Months 5-min
Interpolated

Single
Asset

611 7,437,120 18 minutes 4 minutes

Fleet ADR
(980 tags per
asset)

3 Months 5-min
Interpolated

1/4 of
Fleet

611 714,736,512 2 weeks 112 minutes

Data Gap 1 Month Raw 1/4 of
Fleet

121 2,340,417 Not practical
to run

28 minutes

Data Density 2 Months Raw 1/4 of
Fleet

300 47,401,042,413 Not practical
to run

105 minutes

Overspeed 1 Year 1-Sec In-
terpolated

1/4 of
Fleet

1.5 TB 9,383 Not practical
to run

9 minutes

8.1 Side-by-Side Comparison of Traditional vs.
Enterprise Historian Approaches

Table 1 is a performance comparison of our use cases be-
tween our traditional historian and Enterprise Historian en-
vironments. The use cases executed are a representative
sampling of the type of queries that are executed on a regu-
lar basis in our traditional historian environment. The range
of input data for these use cases differ greatly, from as little
as 121 GB to 1.5 TB of compressed raw data. The size of
the input data is invariant whether a single asset or 1/4 of
the fleet is being queried (it changes only when more months
are queried, or when the entire fleet is queried instead of one
fourth). It should also be noted that some of the input data
sets hold only 3 months of our total data collection opera-
tion. Others contain as much as an entire year’s worth of
data. In addition to this, since we cannot perform exper-
imental studies in the Thermal RM&D production system
without impacting 24x7 support of customers, the execution
times for the traditional historian environment have been
normalized from actual jobs to match the input characteris-
tics of the use cases executed within the Enterprise Historian
system. Here are brief definitions of the use cases detailed
above:

ADR Automated Data Request, a standard process for re-
questing historical data from the system

Data Gap Quality check that looks at every tag and iden-
tifies marked and unmarked gaps in the sensor data

Data Density Quality check that performs a daily record
count of every tag in the database

Overspeed Data mining analytic that evaluates 1-second
resolution data from two tags to determine whether an
overspeed condition has occurred

1/4 of the Fleet Approximately 375 gas and steam tur-
bine assets

The results in Table 1 tell quite a compelling story. The
first three use cases are all ”ADR” type of queries. All three
were executed over the same three months of data. In addi-
tion to this, the first two use cases were executed using the
same asset’s records. Although one can see the gains in the

first two use cases, where we can reduce our cycle times by
about 80%, the real performance of this system can be seen
when comparing these first two use cases against the third
ADR use case. It was mentioned earlier in this discussion
that a Hadoop system is near-linear in performance with
respect to adding additional nodes and seeing an almost
proportional decrease in overall cycle time of a job. This
should not be confused with the performance characteristics
that can be seen when adding additional assets for analy-
sis to a particular Enterprise Historian job. If there is some
base job such as the first use case in Table 1 that takes three
minutes to complete, we do not see this same job execute
in 6 minutes when an additional asset is queried for that
same job (twice the number of inputs). The performance
characteristics take on much more of a logarithmic behav-
ior. One of the primary differences between use case three
and the first two use cases is that use case three is query-
ing 1/4 of our fleet, rather than just a single asset. If this
system’s performance was linear with respect to the number
of queried assets, and if we assume for a moment that we
are querying the same number of tags as we are in use case
one (which, we are actually querying for significantly more
in use case three), we would expect use case three to take
about (3 minutes * 375 assets) / 60 minutes = ∼ 19 hours
to complete. However, it turns out that use case three takes
just under 2 hours to complete. This is because all of the
input data contained in these archives that match our given
input time range are being processed in the Mapper phase,
regardless of the number of assets that are queried. It is the
larger queries, like use case three, that make use of all of the
input data. The smaller jobs simply ignore the time series
data unrelated to the queried assets.

The remaining three use cases have never before been at-
tempted in our traditional environment at the level that
these execute within Enterprise Historian. Due to various
combinations of input data size and analysis logic, their
equivalent jobs in our traditional system would take an im-
practical amount of time (weeks to months) to execute and
would starve our other processes. With Enterprise Histo-
rian we can now execute these important use cases over our
entire fleet in a more timely and efficient manner.

8.2 Archive vs. Plaintext File Comparison



Table 2: Archive vs Plaintext Query Performance Results
File Type Map Time Reduce Time Shuffle Time Merge Time Elapsed Time

Plaintext (10%) 0.3833 5.8 8.5167 8.75 16.8833
Archive (10%) 1.1667 5.7833 2.6 2.7833 10.8
Plaintext (50%) 0.9167 30.6333 18.9333 19.1833 56.5167
Archive (50%) 6.1833 30.3667 12.6833 12.85 51.2
Plaintext (100%) 1.5 59.5 30.25 30.45 99.3167
Archive (100%) 12.0833 62.2167 26.2167 26.55 109.6833

Figure 6: Archive vs Plaintext Query Performance
and Storage Chart

As stated earlier, Proficy Historian archive files bring a
significant advantage in storage requirement. However, it
needs to be studied how the query performance is affected.
To answer that question, a number of tests were carried
out to compare the performance of querying archive files to
their equivalent plaintext files (i.e., the same time series data
samples in binary and text formats).

All tests compared the speed of querying three archive
files against the speed of querying their equivalent plain-
text files. Note that each archive file and plaintext file has
information about 209,606 tags containing a total of approx-
imately 1,512,509,499 data samples.

Two kinds of tests were run:

Historian archive processes Proficy Historian archive files
and performs timestamp and tag name filtering

Plaintext processes plaintext files and performs timestamp
and tag name filtering

A primary difference between archive and plaintext is the
use of a plaintext file Mapper as opposed to a historian
archive Mapper for reading the time series data.

This test set is composed of three tests, each contain-
ing two MapReduce job executions. The first job extracts
462,153,541 samples which represents approximately 10% of
the total number of samples in the input data set. The
second job extracts 2,322,026,687 samples which represents
approximately 50% of the total number of samples in the
input data set. While the third job extracts 4,515,471,135
samples which represents approximately 100% of the total
number of samples in the input data set.

The input size to the archive jobs is 28.24062 GB, so the
jobs used 227 Map tasks to process the input data set. The
input size to the plaintext jobs is 236.8456 GB, so the jobs

used 1902 Map tasks to process the input data set. The
results are presented in Table 2 and Figure 6.

The columns of the results table represent the following:

File Type the format of the input data set, whether plain-
text (simple text format) or archive (Proficy Historian
archive file binary format).The percentage of the num-
ber of samples involved in the query is specified in
brackets.

Input Size the total size in GB of the input data set

Mappers the number of Map tasks that were executed to
process the input data set

Map Time the average time taken (in minutes) by the in-
dividual Map tasks

Reduce Time the average time taken (in minutes) by the
individual Reduce tasks

Shuffle Time the average time taken (in minutes) by the
individual Shuffle tasks

Merge Time the average time taken (in minutes) by the
individual Merge tasks

Elapsed Time the overall time taken (in minutes) by the
job to process the input data set and write the output
results to HDFS

The tests were run on a four node Pivotal HD DCA clus-
ter, where each node had the following configuration:

• Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz

• 32 cores

• 64GB RAM

• Red Hat Enterprise Linux Server release 6.2 (Santiago)

Each job ran with 20 Reducer tasks.
The results show that if the output ratio (number of sam-

ples extracted from archive files divided by total number of
samples) is low to median, archive files either outperform or
are on par with plaintext files in queries. It is partially at-
tributable to the I/O efficiency associated with compressed
input files. Only when the output ratio is higher, does the
processing load needed to decompress more samples start to
outweigh the I/O efficiency. Nonetheless, the performance
penalty in a typical multi-archive query (as shown) is no
more than ten percent. Even in the worst case in the study
(output ratio at 100 percent in a single-archive query, not
shown in this paper), it takes an acceptable thirty percent
more time than plaintext.



8.3 Fleet Analyses
By reducing the time to analyze fleet level data sets from

weeks to hours, Enterprise Historian will enable the follow-
ing use cases:

• Calculate historical summary metrics for the entire
fleet for all time

• Execute diagnostics rules on the entire fleet for all time

• Calculate historical baselines for the entire fleet

8.4 Operational Analyses
Enterprise Historian will also enable the following engi-

neering analysis use cases:

• Perform data analyses in support of RCAs (root cause
analyses)

• Perform historical market analyses

• Perform ad-hoc data mining investigations

• Look for common historial patterns

9. BUSINESS IMPACT
As Thermal RM&D monitors its global fleet of gas and

steam turbines, 6-8 terabytes of highly compressed time se-
ries sensor data are collected and stored per year. The in-
troduction of Big Data technology is enabling RM&D to
provide more timely and accurate analysis and diagnostics
of this collected data. Being able to keep over a decade’s
worth of data online for deep historical mining and analysis
is expected to result in direct improvements in the reliabil-
ity and performance of customer equipment. For example,
this data can be used to back-test existing and new analytic
models, run online condition-based lifing models across the
entire fleet, and provide deep data mining capabilities for
outage management.

With Enterprise Historian, these fleet-level data mining
efforts are able to run within a matter of minutes to hours,
as opposed to weeks to months on a single machine today.
Furthermore, the near linear scalability of Hadoop allows
this platform to scale out across new hardware as the vol-
ume of data grows over time. Thus, the entire 20+ years
of Industrial Big Data generated from the installed base of
equipment will be able to be stored online and mined on
demand, replacing what was in many instances months of
significant manual effort to explore much smaller data sets.

The qualitative benefits provided by Enterprise Historian
to GE Power & Water’s Thermal RM&D Center can be
summarized as follows:

• Increased Productivity—reduce decision times and min-
imize effort spent managing data. Finding cross-fleet
patterns and creating/testing rules is very inefficient
(weeks to months) and can be reduced to minutes or
hours.

• Higher Quality Analytics—data-driven decisions are
correct and optimal. Larger data sets can be used
for creating rules, thus reducing rule errors on unseen
issues.

• Increased Customer Satisfaction—the customer sees
our greater speed and consistency.

• Elevated Team Effectiveness—digitized knowledge re-
duces training needs and increases staff flexibility. Ex-
perienced engineers with valuable knowledge can be
more productive, and new engineers with less histori-
cal knowledge can also be more effective.

• Enabled Growth—digitized knowledge allows for the
creation of new digital products and services.

The value of exposing machinery data to massively paral-
lel analysis and data mining operations are expected to lead
to significant amounts of productivity for GE and even more
significant value to GE’s customers through better manage-
ment and operation of their equipment (avoiding unplanned
downtimes). To date, the team has filed 15 patents on the
Enterprise Historian system and adjacent technologies.

10. FUTURE OUTLOOK
Today’s software infrastructures for RM&D are moving in

at least two distinct directions. On one end, high through-
put infrastructures are being built for near real-time to true
real-time analysis, using technologies such as Data Distribu-
tion Service (DDS) [17] for fast data movement and Complex
Event Processing (CEP) for stream processing [14]. On the
other end, Big Data infrastructures are being built for stor-
age and batch processing of extremely large volumes of data
sets.

As the needs grow for near real-time to true real-time
analysis, it will no longer be acceptable for these two in-
frastructures to be kept in distinct silos. Fast processing
capabilities and Big Data storage capabilities will have to
be merged into one hybrid system [9]. Through multiple
different research efforts, progress has been made towards
building such a hybrid fast big data platform. Efforts such as
Impala from Cloudera [13], Storm from Twitter [23], Spark
from the Berkeley AMP Lab [24], and most recently HAWQ
from Pivotal [18] have each been meaningful, although very
different, attempts in this direction. Impala and HAWQ
both focus on enabling near real-time SQL-like querying of
data in Hadoop. Storm is meant as an infrastructure for
Big Data complex event processing, and Spark is meant as
an in-memory infrastructure to speed-up the performance of
traditional Hadoop jobs. Without in-memory technologies,
I/O bottlenecks may forever plague Big Data applications,
limiting their real-time performance. While one could argue
that solid-state drives (SSDs) are a viable alternative due to
their considerably faster performance than traditional disk
drives without the volatility of RAM, their latencies may
still be orders of magnitude slower (microseconds) than even
average RAM speeds (nanoseconds).

Looking forward, Big Data architectures may be a tightly
coupled combination of a CEP-like engine, an operational
in-memory historian, and a disk-based Hadoop store, in-
tegrated to achieve the goals of real-time analytic execu-
tion on high velocity Big Data. It can be envisioned that
a high-throughput CEP-style framework capable of process-
ing thousands to millions of data points per second will be
used to capture data sent from equipment sensors, imme-
diately performing operations such as data cleaning, trans-
formations, and simple analytics. The data should then be
ingested into an operational in-memory historian for mid-
term storage, supporting fast analytics on the most relevant
subset of near-term historical data, as well as interactive vi-
sualizations and dynamic report generation. Once the data



has aged such that it is no longer required for near real-time
analysis, the data can then be transitioned into a long-term,
disk-based storage platform such as Enterprise Historian. A
single interface layer should be implemented such that these
three components (CEP-like engine, operational historian,
disk-based store) all work in tandem to solve complex chal-
lenges and are viewed and interacted with as a single system.
End users should not need to know where data resides when
inserting data, running a query, or invoking an analytic, and
thus would experience the infrastructure as one holistic hy-
brid high-velocity, high-volume Big Data platform.

11. CONCLUSIONS
GE Global Research, GE Intelligent Platforms, and GE

Power & Water have designed and built Enterprise Histo-
rian to address the challenge of efficiently storing and an-
alyzing Industrial Big Data with the goal of enabling GE
Power & Water to perform deep historical analysis and data
mining on tens to hundreds of terabytes of time series sensor
data. Enterprise Historian is built on top of Apache Hadoop,
an open-source framework for executing batch analytics on
big data sets in a distributed computing environment. An
instance of Enterprise Historian has been deployed on a 48-
node Hadoop cluster at GE Global Research and with this
instance, analytics that used to take days to weeks to exe-
cute can now be run in minutes to hours.

Enterprise Historian has been performance tested against
a diverse suite of GE Power & Water gas and steam turbine
RM&D analytics. These tests have demonstrated a 5x-180x
speed-up for analytics that were possible to run in the ex-
isting Thermal RM&D environment. Perhaps even more
importantly, analytics that were not feasible to run before
(that would take weeks to months of largely manual effort),
have been demonstrated to run in minutes to hours in the
system.

Further testing was performed to evaluate the benefits of
using the Proficy Historian archive file format vs. simply
storing the time series data in plaintext files in Hadoop.
These tests demonstrated comparable performance in query
execution times, with the archive file outperforming plain-
text when the queries required small to medium amounts of
data, and the plaintext format outperforming the archive file
when most of the data is being requested. While the query
performance is comparable between the two storage models,
the data footprint is substantially different—the archive file
gives an 8x reduction in the size of the data over plaintext,
significantly reducing storage costs.

Overall, placing tens to hundreds of terabytes of Ther-
mal RM&D’s Industrial Big Data in Enterprise Historian
for massively parallel analysis and data mining operations
is expected to lead to significant amounts of productivity
for GE Power & Water and significant value to GE’s cus-
tomers through better management and operation of their
equipment.

Disclaimer
Apache, Apache Hadoop, and Hadoop are trademarks of
The Apache Software Foundation. Used with permission.
No endorsement by The Apache Software Foundation is im-
plied by the use of these marks. All product names and
trademarks are the property of their respective owners. The
performance results and other efficiencies realized by Enter-

prise Historian throughout this document are not guaran-
teed on other systems.
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